The Complexity of Model Checking Higher Order Fixpoint Logic
نویسندگان
چکیده
Higher-Order Fixpoint Logic (HFL) is a hybrid of the simply typed λ-calculus and the modal μ-calculus. This makes it a highly expressive temporal logic that is capable of expressing various interesting correctness properties of programs that are not expressible in the modal μ-calculus. This paper provides complexity results for its model checking problem. In particular, we consider those fragments of HFL that are built by using only types of bounded order k and arity m. We establish k-fold exponential time completeness for model checking each such fragment. For the upper bound we use fixpoint elimination to obtain reachability games that are singly-exponential in the size of the formula and k-fold exponential in the size of the underlying transition system. These games can be solved in deterministic linear time. As a simple consequence, we obtain an exponential time upper bound on the expression complexity of each such fragment. The lower bound is established by a reduction from the word problem for alternating (k−1)-fold exponential space bounded Turing Machines. Since there are fixed machines of that type whose word problems are already hard with respect to k-fold exponential time, we obtain, as a corollary, k-fold exponential time completeness for the data complexity of our fragments of HFL, provided m exceeds 3. This also yields a hierarchy result in expressive power.
منابع مشابه
The Complexity of Independence-Friendly Fixpoint Logic
We study the complexity of model-checking for the fixpoint extension of Hintikka and Sandu’s independence-friendly logic. We show that this logic captures ExpTime; and by embedding PFP, we show that its combined complexity is ExpSpace-hard, and moreover the logic includes second order logic (on finite structures).
متن کاملModel Checking the First-Order Fragment of Higher-Order Fixpoint Logic
We present a model checking algorithm for HFL1, the firstorder fragment of Higher-Order Fixpoint Logic. This logic is capable of expressing many interesting properties which are not regular and, hence, not expressible in the modal μ-calculus. The algorithm avoids best-case exponential behaviour by localising the computation of functions and can be implemented symbolically using BDDs. We show ho...
متن کاملThree notes on the complexity of model checking fixpoint logic with chop
This paper analyses the complexity of model checking Fixpoint Logic with Chop – an extension of the modal μ-calculus with a sequential composition operator. It uses two known game-based characterisations to derive the following results: the combined model checking complexity as well as the data complexity of FLC are EXPTIMEcomplete. This is already the case for its alternation-free fragment. Th...
متن کاملA Guarded negation
We consider restrictions of first-order logic and of fixpoint logic in which all occurrences of negation are required to be guarded by an atomic predicate. In terms of expressive power, the logics in question, called GNFO and GNFP, extend the guarded fragment of first-order logic and the guarded least fixpoint logic, respectively. They also extend the recently introduced unary negation fragment...
متن کاملA Measured Collapse of the Modal µ-Calculus Alternation Hierarchy
The μ-calculus model-checking problem has been of great interest in the context of concurrent programs. Beyond the need to use symbolic methods in order to cope with the state-explosion problem, which is acute in concurrent settings, several concurrency related problems are naturally solved by evaluation of μ-calculus formulas. The complexity of a naive algorithm for model checking a μ-calculus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Logical Methods in Computer Science
دوره 3 شماره
صفحات -
تاریخ انتشار 2005